Skip to main content
Main Menu
  • 产品
    Back
    产品
    • 辐射探测
      Back
      辐射探测
      • 晶体闪烁体
        Back
        晶体闪烁体
        • 晶体闪烁材料
          Back
          晶体闪烁材料
          • 标准探测器组件
          • 双伽玛中子检测
          • 像素化阵列
          • 核医学成像
          • 极端环境(加固型)
          • 集成硅光电倍增器(SiPM)闪烁探测器
        • 标准闪烁产品列表
        • 电子器件
          Back
          电子器件
          • 插接基座
          • 传感器套件
        • 有机闪烁体
          Back
          有机闪烁体
          • 有机闪烁材料
            Back
            有机闪烁材料
            • 塑料闪烁体铸造片材
            • 液体闪烁体格
            • 闪烁纤维
            • 延长寿命的塑料
            • 中子探测解决方案
            • 基于ZnS和LiF的中子探测器
            • 光学塑料部件
            • 组装材料
          • 效率计算器
          • 晶体材料选择器
        • 光子产品
          Back
          光子产品
          • 合成蓝宝石
            Back
            合成蓝宝石
            • 蓝宝石材料
            • CLASS®蓝宝石片材
            • 蓝宝石管材和棒材
            • 粘接复杂形状
            • 弧形蓝宝石
            • 透明装甲
          • X射线单色器
          • 石榴石
      • 应用
        Back
        应用
        • 便携式检测
        • 核研究
        • Imaging
      • 市场/应用
        Back
        市场/应用
        • 医疗
          Back
          医疗
          • 正电子发射断层扫描(PET)
          • 单光子发射计算机断层扫描(SPECT)
          • 血液分析及其它应用
          • 骨矿物质密度测定 (BMD)
          • 用于术中成像的蓝宝石
        • 安保
          Back
          安保
          • 急救人员
          • 边境检查
          • 行李扫描仪
        • 物理学
        • 石油和天然气
          Back
          石油和天然气
          • 石油和天然气
          • 随钻测量(MWD)及随钻测井(LWD)
          • 航空测量
          • 地面测量
        • 工业-辐射
          Back
          工业-辐射
          • 环境监测
          • 保健物理学
          • 核燃料及保障
          • 废钢监测
          • 过程监视和测量
        • 国防与航空航天
          Back
          国防与航空航天
          • 透明装甲
          • 红外对抗系统
          • 增强飞行视觉系统
        • 工业-特种材料
          Back
          工业-特种材料
          • 半导体制造
          • 微波-射频
          • 准分子激光
          • 光频隔离器晶片
          • X射线元素分析
      • 支持
        Back
        支持
        • 联系站点定位器
        • 请求联系人
        • 请求报价
      • 新闻中心
        Back
        新闻中心
        • 资源中心
        • 新闻与事件
      • 常见问题
      world SAINT-GOBAIN
      Logo Saint-Gobain Crystals
      • 产品
        • 辐射探测
          • 晶体闪烁体
            • 晶体闪烁材料
            • 集成硅光电倍增器(SiPM)闪烁探测器
            • 双伽玛中子检测
            • 标准探测器组件
            • 像素化阵列
            • 核医学成像
            • 极端环境(加固型)
          • 标准闪烁产品列表
          • 有机闪烁体
            • 有机闪烁材料
            • 塑料闪烁体铸造片材
            • 液体闪烁体格
            • 闪烁纤维
            • 基于ZnS和LiF的中子探测器
            • 中子探测解决方案
            • 组装材料
            • 光学塑料部件
            • 延长寿命的塑料
          • 电子器件
            • 插接基座
            • 传感器套件
          • 晶体材料选择器
          • 效率计算器
        • 光子产品
          • 合成蓝宝石
            • 蓝宝石材料
            • 弧形蓝宝石
            • 粘接复杂形状
            • CLASS®蓝宝石片材
            • 蓝宝石管材和棒材
            • 透明装甲
          • X射线单色器
          • 石榴石
      • 应用
        • 便携式检测
        • 核研究
        • 安全和医学影像
      • 市场/应用
        • 医疗
          • 正电子发射断层扫描(PET)
          • 单光子发射计算机断层扫描(SPECT)
          • 血液分析及其它应用
          • 骨矿物质密度测定 (BMD)
          • 用于术中成像的蓝宝石
        • 安保
          • 急救人员
          • 边境检查
          • 行李扫描仪
        • 石油和天然气
          • 石油和天然气
          • 随钻测量(MWD)及随钻测井(LWD)
          • 航空测量
          • 地面测量
        • 国防与航空航天
          • 透明装甲
          • 红外对抗系统
          • 增强飞行视觉系统
        • 工业-辐射
          • 环境监测
          • 保健物理学
          • 核燃料及保障
          • 废钢监测
          • 过程监视和测量
        • 工业-特种材料
          • 半导体制造
          • 准分子激光
          • 微波-射频
          • 光频隔离器晶片
          • X射线元素分析
        • 物理学
      • 支持
        • 请求联系人
        • 请求报价
      • 新闻中心
        • 资源中心
        • 新闻与事件
      • 常见问题

      You are here

      1. 首页
      2. products
      3. 辐射探测
      4. 晶体闪烁体
      5. 像素化阵列

      像素化阵列

      可提供包括诸如 CdWO4 ,CsI(Tl), BGO, 和LYSO晶体或诸如闪烁塑料等其他材料的像素化阵列组件。圣戈班还可生产由非圣戈班生长的其他材料制作的晶体阵列。 我们可提供用于优化您的应用阵列性能的各种设计选项和反射材料。圣戈班的制造工艺可确保高光产额以及极佳像素对像素均匀性,且串扰极小。线性阵列通常用于安保型应用(机场行李扫描仪),而2D阵列用于在医学成像应用。这两种类型也可用于无损探伤/检测设备。材料类型选择与应用及所需采集的信息有关。

      欢迎向我们咨询您的应用问题

       

      线性阵列组件(单行像素)线性阵列最常在行李扫描仪、货物检查和其他无损探伤方面使用。CdW04、LYSO和CsI(Tl)为此类应用的常用闪烁材料(但不限于此)。在用于医学应用时,诸如LYSO等晶体可用于骨密度测定仪器。

      2D阵列组件(像素以XY矩阵排列)2D阵列最常用于医学扫描仪(PET、SPECT、CT)和无损探伤。此类应用的常用闪烁材料为LYSO、BGO、和CsI(TL)(但不限于此)。   

       

       

      特点与优势

      特点包括极小的像素分离、更少光学串扰,优异的像素对像素均匀性以及阵列(批次对批次)均匀性。圣戈班还可提供包含光电二极管、PSPMT或SiPM等显示设备或任何客户提供设备的全面集成设计。    

       

       

      设计选项

      在像素尺寸、像素数量、像素分离材料(反射和/或辐射屏蔽)和晶体表面光洁度方面存在很多设计选项。线性阵列组件通常与像素化光电二极管配合使用。2D阵列通常与像素化光电二极管、位置敏感型光电倍增管(PSPMT)和硅光电倍增器(SiPM)配合使用。

       

      Properties of Materials used in Arrays

      Material

      CsI(Tl)

      CdWO4

      BGO

      LYSO

      Density, g/cm3 4.51 8.0 7.13 7.10
      Solubility in H2O, g/100g@25oC 85.5 0.5 – –
      Hygroscopic slightly no no no
      Relative Light Output [photons/keV] 54 13 9 32
      Relative Rad Hardness Medium High High High
      Wavelength of Maximum Emission [nm] 550 475 480 420
      Primary Decay Time 1μs 14μs 300μs 41μs
      Afterglow 0.5-5% @6ms 0.1% @3ms 0.005% @3ms <0.1% @6ms

      CdWO4 high light output and low afterglow make it ideal for use with silicon photodiodes in detectors for medical and industrial CT scanners. CdWO4 has very good radiation resistance, and its temperature dependence is small in the 0 to 60oC range. Its high density makes it a good choice for 300+ keV imaging for container and vehicle scanning.

      CsI(Tl) has the highest light output of these scintillators, and its emission matches well with silicon photodiodes. However, its long afterglow limits its use to applications for which intervals between sampling are long or some residual signal can be tolerated. CsI(Tl) is a rugged, malleable material that can be easily fabricated into a variety of geometries. It is slightly hygroscopic but is packaged in a manner to minimize exposure to moisture. CsI(Tl) is regularly fabricated into both linear and 2-dimensional (2D) arrays with pixel sizes as small as 500 microns square.

      LYSO is a Cerium doped lutetium based scintillation crystal that offers high density and a short decay time. It has an improved light output and energy resolution compared to BGO, which has a similar density. Applications that require higher throughput, better timing and better energy resolution will benefit from using LYSO material.

      Saint-Gobain Crystals fabricates arrays from a variety of other scintillation materials including BGO and ceramics.

      Array Design Parameters

      There are choices of scintillator materials and separator / reflectors to optimize performance to a specific application. The listing of parameters addresses the elements that must be considered in the design of a linear or 2D array.

      The table below shows the materials and the associated pixel sizes that are regularly produced today. The pixel sizes are controlled primarily by mechanical properties of the crystals, e.g. hardness, cleavage, ease of machining. For example, CdWO4 has a cleavage plane in one crystallographic direction. For that reason, it is not possible, with current techniques, to achieve 0.3 x 0.3 mm2 pixels because of fractures along the cleavage planes that occur during cutting and grinding in manufacture. However, 0.3 x 1.0 mm2 pixels can be produced.

       

      Design Parameters

       

      • Material: Type of scintillation crystal or material desired.
      • Pixel or Element Size: The “X” and “Y” dimensions of each scintillator pixel.
      • Separator Type and Thickness: The type of reflector between the crystal pixels and its overall thickness, “Gap X(A)” or “Gap Y(B)”.  Note: this may be a composite or laminate of white reflector and metal materials. The geometry of the pixel, the thickness of the reflector, the scintillator material used and other factors influence the reflectivity obtained in each array design. Array reflector materials are listed in the order of decreasing reflectivity.
      • Pitch: This is the distance between the center of one element to the center of an adjacent element, “X” + “Gap X(A)” or “Y” + “Gap Y(B)” Note: In 2D arrays with rectangular pixels, the pitches in the “X” and “Y” directions will be different.
      • Radiation Thickness: This is the “Z” dimension and specifies the thickness of the array in the direction of the incoming radiation.
      • Back Reflector Thickness: Usually a white reflector is applied to the radiation entrance side of the array to reflect the light back into the pixel so it can be directed to the light sensor.
      • Material adjacent to the end pixels or elements: The end crystals may need a special reflector thickness or other treatment, e.g., to keep a constant pitch from array to array if they will be joined together in use.

       

       

      1D and 2D Configurations

       

       

      Minimum Discrete Pixel Sizes Available
      in Crystal Scintillators
      Material Minimum Pixel Sizes * Comments
      Linear (mm) 2D (mm)
      CsI(Tl) 0.3 0.5  
      CdWO4 0.3 1.0 Cleavage Plane
      BGO 0.3 0.3  
      LYSO 0.8 0.8 Min. Untested
      * Guidelines, not hard numbers
      Separator Types and Thicknesses in Order of Decreasing Reflectivity
      Material Thickness Range Approximate Relative
      Reflectivity *
      White Powder (e.g. TiO2, MgO) ** 0.25 mm and up 100%
      Teflon Sheet ** 0.15 mm - 0.50 mm 98%
      White Reflector Paint 0.04 mm - 0.10 mm 96%
      White Plastic 0.05 mm and up 95%
      White Epoxy 0.10 mm - 0.75 mm 94%
      Composites *** 0.10 mm and up 94%
      Aluminum/Epoxy 0.05 mm - 0-.1 mm 75%
      Metals (Pb, Ta) / Epoxy 0.05 mm and up 65%
      * These are guidelines only and are based on optimum, not minimum, thickness.
         Values will vary with pixel geometry, surface finish and other specific design parameters.
      ** These are used as reflector materials in large scintillation crystal packaging.
      *** Composite separators are clear epoxy-paint-clear epoxy, white epoxy- metal-white epoxy.

      Understanding Array Model Numbers

          1D Array 2D Array

       

      Example Model Numbers 82.58X4.2A30/16/5.2CsI(Tl) 82.58X4.2A30/16x4/5.2x4CsI(Tl)

      1

      Active area length 82.58 82.58
      2 Active area height 4.175 4.175
      3 X-ray crystal depth (Z) 30 30
      4 Number of pixels
      If the array is 2D, this is in the format [Pixels X] x [Pixels Y]
      16 16x4
      5 Pitch [X + Gap X(A)]
      If the array is 2D AND the pitch is different in X and Y, this is in the format [X+GapX(A)]x[Y+GapY(B)].
      5.2 5.2x4
      6 Scintillator CsI(Tl) CsI(Tl)

              

       

      Low Afterglow Linear Arrays

      Linear CsI(Tl) Segmented Arrays

      Recent advances in CsI(Tl) array manufacturing have resulted in afterglow reduction, improved light output, and afterglow uniformity. Single energy, dual-energy, fixed frame, rotating gantry, CsI(Tl) based arrays can be used in almost any high-quality X-Ray imaging application in a multitude of industries (Security Baggage Scanning, Cargo Scanning, Medical, Non-Destructive Industrial Inspection).  To download the product performance sheet, click here.

       

      Array Performance (Typical)

      X-Ray Test Parameter

      Light output uniformity ±10% within an array
      (requires matching photodiode)
      X-Ray Power 120KV @ 1mA
      Light output array to array ±10% Irradiation Time 2.5 Seconds
      Afterglow 5000ppm @100ms (initial test)
      ≤2500ppm (after burn in)
      Afterglow Measurements 100ms
      Afterglow uniformity ±10% within an array Distance Crystal to X-Ray Source 60 cm

      Array Design Capabilities

      Typical Sampling Rate 1 ms
      Number of channels (typical) 8-64

      Afterglow in PPM (parts-per-million) is calculated by dividing the output at 100 ms by the reference output with the X-Ray beam on, times 1 million to convert it to PPM:

      V100 (1E6)
      Vref
      Minimum pitch 0.5mm Light output calculation:
      -% uniformity = (Min-Avg)/Avg
      +% uniformity = (Max-Avg)/Avg
      X-Ray thickness 50mm max    

      Linear CsI(Tl) Segmented Arrays Afterglow calculations 

      Related Resources

       闪烁阵列手册
       LYSO材料数据表
       低余辉线性CsI(Tl)分段阵列
       钨酸镉材料数据表
       BGO材料数据表
       Interpreting Model Numbers

       联系我们以了解更多信息!

      圣戈班晶体是
      圣戈班陶瓷材料的下属企业

       

       

      在圣戈班晶体工作意味着什么?

      聆听来自晶体团队两位员工的介绍。 点击此处

      • 辐射探测
      • 合成蓝宝石
      • X射线单色器
      • 石榴石
      • 市场/应用
      • 关于我们
      • 新闻与事件
      • ISO认证
      • 销售条件
      • 法律声明
      • 加利福尼亚供应链透明度法案
      • 网站地图

       

       联系我们

       Request a Quote

       Phone and Email

       

      © Copyright Saint-Gobain 2020. All rights reserved.